Identification of pregnancy-associated plasma protein A as a migration-promoting gene in malignant pleural mesothelioma cells: a potential therapeutic target
نویسندگان
چکیده
Despite recent advances in treatment, malignant pleural mesothelioma (MPM) remains a deadly disease. Targeted therapy generated broad interests and is highly expected for the treatment of MPM, yet promising preclinical results have not been translated into substantial clinical benefits for the patients. In this study, we tried to identify the genes which play functional roles in cell migration as well as to test whether they can be used as novel targets for molecular targeted therapy for MPM in preclinical model. In our study, pregnancy-associated plasma protein A (PAPPA) was identified as a gene whose expression level is correlated with MPM cell migration by correlation analysis combining MPM cell migration ability and their gene expression profiles. Highly migratory cells were selected from MPM cell lines, MSTO-211H, NCI-H290 and EHMES-1 in vitro and up-regulation of PAPPA in these cells were confirmed. In vitro, PAPPA was demonstrated to stimulate the MPM cell migration via cleavage of insulin-like growth factor-binding protein-4 and subsequent release of IGF-1. Gene silencing of PAPPA in MPM cells led to reduced migration, invasion and proliferation. Furthermore, PAPPA shRNA transfected NCI-H290 when orthotopically inoculated into pleural cavity of severe combined immunodeficiency recipient mice, failed to develop tumors and produce bloody pleural effusion as control shRNA transfected cells did. Our study suggests that PAPPA plays a functional role in promoting MPM cell migration and it might serve as a potential therapeutic target for the treatment of MPM.
منابع مشابه
Hyaluronic acid enhances cell migration and invasion via the YAP1/TAZ-RHAMM axis in malignant pleural mesothelioma
Most malignant mesotheliomas (MPMs) frequently show activated forms of Yes-associated protein 1 (YAP1) and transcriptional co-activator with PDZ-binding motif (TAZ), which transcriptionally regulates the receptor for hyaluronic acid-mediated motility (RHAMM). As RHAMM is involved in cell migration and invasion in various tumors, we speculated that hyaluronic acid (HA) in pleural fluid might aff...
متن کاملDownregulation of Sp1 is involved in honokiol-induced cell cycle arrest and apoptosis in human malignant pleural mesothelioma cells.
Malignant pleural mesothelioma (MPM) is an extremely aggressive type of cancer and is associated with a poor patient prognosis due to its rapid progression. Novel therapeutic agents such as honokiol (HNK) improve the clinical outcomes of cancer therapy, yet the mechanisms involved have not been fully elucidated. The present study examined the regulatory effects of HNK on the growth and apoptosi...
متن کاملHesperidin Induces Apoptosis by Inhibiting Sp1 and Its Regulatory Protein in MSTO-211H Cells
Hesperidin, a flavanone present in citrus fruits, has been studied as potential therapeutic agents that have anti-tumor activity and apoptotic effects in several cancers, but there is no report about the apoptotic effect of hesperidin in human malignant pleural mesothelioma through the specificity protein 1 (Sp1) protein. We investigated whether hesperidin inhibited cell growth and regulated Sp...
متن کاملPre-clinical testing of malignant fibroblast activation protein-specific re-directed T cells for treatment of pleural mesothelioma
Introduction Malignant pleural mesothelioma (MPM) is an incurable malignant disease that results mostly from chronic exposition to asbestos. Fibroblast activation protein (FAP) is predominantly expressed on the surface of reactive tumor-associated fibroblasts and on particular cancer types. Therefore, FAP is an attractive target for adoptive T cell therapy. T cells can be re-directed by gene tr...
متن کاملOncogenes and Tumor Suppressors Nonamplified FGFR1 Is a Growth Driver in Malignant Pleural Mesothelioma
Malignant pleural mesothelioma (MPM) is associated with asbestos exposure and is a cancer that has not been significantly affected by small molecule-based targeted therapeutics. Previously, we demonstrated the existence of functional subsets of lung cancer and head and neck squamous cell carcinoma (HNSCC) cell lines in which fibroblast growth factor receptor (FGFR) autocrine signaling functions...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 4 شماره
صفحات -
تاریخ انتشار 2013